Show simple item record

dc.contributor.advisorSangbae Kim.en_US
dc.contributor.authorEvans, Kathryn Louise, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-07-01T18:42:36Z
dc.date.available2016-07-01T18:42:36Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103464
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 123-131).en_US
dc.description.abstractDespite the development of many quadrupedal robots and variety of possible running gaits, relatively little is known on the mechanisms that interplay between gait patterns and efficiency of quadrupedal machines. To gain insight on the energetics of robotic running, this work presents a study of the energetic trends across variations in gait and explores the mechanisms that are responsible for running efficiency for a quadrupedal robot. Motivated by the MIT Cheetah, the study uses a prototypical quadruped model, where DC motors are the main means of actuation, to extract principles for future control and design. This represents the first such study across gaits for robotic quadrupeds in the design paradigm of the MIT Cheetah. With the prototype model, we have found that it is energetically optimal to tend towards impulsive ground reaction forces on rigid terrain. Adding compliance at the contact interface lowers the cost of transport and increases the optimal duty ratio. In the optimal gaits, the total cost of transport is dominated by the cost of joule heating in the motors, and positive mechanical work only accounts for only 3-8% of the total cost. Analysis of trotting, pronking, bounding and galloping gaits reveals trotting to be the most energetically efficient gait across Froude numbers from 0.2 to 45. This trend represents a significant difference from animals, which transition to a gallop at a Froude number between 2 to 3.en_US
dc.description.statementofresponsibilityby Kathryn Louise Evans.en_US
dc.format.extent131 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleCharacterization of gait energetics for electrically actuated quadrupedsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.identifier.oclc952320015en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record