Show simple item record

dc.contributor.advisorGang Chen.en_US
dc.contributor.authorSambegoro, Poetro Lebdoen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-07-01T18:44:06Z
dc.date.available2016-07-01T18:44:06Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103480
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 138-149).en_US
dc.description.abstractThe bimaterial cantilever based near-field thermal radiation measurement setup was an experimental breakthrough in the field of near-field thermal radiation. The setup distinguishes itself from other experimental configurations at that time by allowing a direct measurement of the near-field thermal radiation without the need of fitting parameters. Part of this thesis was devoted to improve the measurement setup. The improved measurement setup is then further modified to experimentally investigate near-field thermal radiation between different geometries and materials. To date, the challenges of alignment of two heat-exchanging bodies have limited the existing experimental investigation on near-field thermal radiation to plate-plate, sphere-plate, and tip-plate measurement. However, theoretical calculations predict more interesting phenomenon beyond these three configurations. This thesis presents a method to measure near-field thermal radiation between two microspheres. The procedure to align two microspheres presented in this thesis extends the existing experimental capability, which is limited to sphere-plate configuration. This method can be further used to investigate the effect of different curvatures of the surface, such as two spheres with different radii, and sphere-cylinder. Recent progress on nanoscale radiative heat transfer has generated strong interest in controlling near-field thermal radiation. The ability to control near-field thermal radiation plays a significant role for applying this technology into applications such as radiative thermal diode, transistor, amplifier, and memory devices. Near-field thermal radiation can be tuned by changing carrier concentration. Using a doped silicon sphere, we demonstrate the tuning effect of near-field thermal radiation between doped silicon surfaces. This demonstration shows the potential application of near-field thermal radiation on controlling radiative transfer by modulating carrier concentration.en_US
dc.description.statementofresponsibilityby Poetro Lebdo Sambegoro.en_US
dc.format.extent149 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleExperimental investigations on the influence of curvature and materials on near-field thermal radiationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc952345561en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record