MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A single-cell perspective on infection

Author(s)
Haseley, Nathan Scott
Thumbnail
DownloadFull printable version (11.79Mb)
Other Contributors
Harvard--MIT Program in Health Sciences and Technology.
Advisor
Deborah T. Hung.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The clinical course of infection is ultimately determined by a series of cellular interactions between invading pathogens and host immune cells. It has long been understood that these interactions, even when they occur in tissue culture models, give rise to a wide variety of different outcomes, some beneficial to the host, others to the pathogen. These cellular interactions, however, are typically studied at a bulk level; masking this cell-to-cell variation, losing important information about the full range of possible host-pathogen interactions, and leaving the mechanistic basis for these different outcomes largely unexplored. Here, we present a system that combines single-cell RNA sequencing with fluorescent markers of infection outcome to directly correlate host transcription signatures with infection outcome at the single cell level. Applying this system to the well-characterized model of Salmonella enterica infection of mouse macrophages, we found: 1) Unique transcription signatures associated with bacterial exposure and bacterial infection, 2) Sustained high levels of heterogeneity in immune pathways in infected macrophages, and 3) A novel subpopulation of macrophages characterized by high expression of the Type I Interferon response after infection. Upon further investigation we found that this heterogeneity in the host Type I Interferon response was the result of heterogeneity in the population of infecting bacteria, namely in the extent of PhoPQ-mediated LPS modifications. This work highlights the importance of heterogeneity as a characteristic of bacterial populations that can influence the host immune response. It also demonstrates the benefits of examining infection with single-cell resolution.
Description
Thesis: Ph. D. in Bioinformatics, Harvard-MIT Program in Health Sciences and Technology, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 83-94).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/103500
Department
Harvard University--MIT Division of Health Sciences and Technology
Publisher
Massachusetts Institute of Technology
Keywords
Harvard--MIT Program in Health Sciences and Technology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.