MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards practical theory : Bayesian optimization and optimal exploration

Author(s)
Kawaguchi, Kenji, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.319Mb)
Alternative title
Bayesian optimization and optimal exploration
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Leslie P. Kaelbling and Tomas Lozano-Perez.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents novel principles to improve the theoretical analyses of a class of methods, aiming to provide theoretically driven yet practically useful methods. The thesis focuses on a class of methods, called bound-based search, which includes several planning algorithms (e.g., the A* algorithm and the UCT algorithm), several optimization methods (e.g., Bayesian optimization and Lipschitz optimization), and some learning algorithms (e.g., PAC-MDP algorithms). For Bayesian optimization, this work solves an open problem and achieves an exponential convergence rate. For learning algorithms, this thesis proposes a new analysis framework, called PACRMDP, and improves the previous theoretical bounds. The PAC-RMDP framework also provides a unifying view of some previous near-Bayes optimal and PAC-MDP algorithms. All proposed algorithms derived on the basis of the new principles produced competitive results in our numerical experiments with standard benchmark tests.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 83-87).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/103670
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.