Show simple item record

dc.contributor.advisorDaniela Rus.en_US
dc.contributor.authorDelPreto, Joseph (Joseph Jeff)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-07-18T19:11:37Z
dc.date.available2016-07-18T19:11:37Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103672
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages [203]-209).en_US
dc.description.abstractPersonalized on-demand robots have a vast potential to impact daily life and change how people interact with technology, but so far this potential has remained largely untapped. Building robots is typically restricted to experts due to the extensive knowledge, experience, and resources required. This thesis aims to remove these barriers with an end-to-end system for intuitively designing robots from high-level specifications. By describing an envisioned structure or behavior, casual users can immediately build and use a robot for their task. The presented work encourages users to treat robots for physical tasks as they would treat software for computational tasks. By simplifying the design process and fostering an iterative approach, it moves towards the proliferation of on-demand custom robots that can address applications including education, healthcare, disaster aid, and everyday life. Users can intuitively compose modular components from an integrated library into complex electromechanical devices. The system provides design feedback, performs verification, makes any required modifications, and then co-designs the underlying subsystems to generate wiring instructions, mechanical drawings, microcontroller code for autonomous behavior, and user interface software. The current work features printable origami-inspired foldable robots as well as general electromechanical devices, and is extensible to many fabrication techniques. Building upon this foundation, tools are provided that allow users to describe functionality rather than structure, simulate robot systems, and explore design spaces to achieve behavioral guarantees. The presented system allows non-engineering users to rapidly fabricate customized robots, facilitating the proliferation of robots in everyday life. It thereby marks an important step towards the realization of personal robots that have captured imaginations for decades.en_US
dc.description.statementofresponsibilityby Joseph DelPreto.en_US
dc.format.extent209 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLet's make robots! : automated co-generation of electromechanical devices from user specifications using a modular robot libraryen_US
dc.title.alternativeAutomated co-generation of electromechanical devices from user specifications using a modular robot libraryen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc953458192en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record