MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low complexity quantized controllers for LTI systems : peak-to-peak performance guarantees

Author(s)
Baldan, Giancarlo
Thumbnail
DownloadFull printable version (8.111Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Munther Dahleh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we propose a novel feedback control scheme for unstable LTI systems performing noise attenuation via a finite-rate digital channel. In the first part of the thesis, we introduce the structure of the control system as well as the encoder and decoder used to transmit the required control signals along the digital channel. The performances of the proposed algorithm are then evaluated by providing explicit bounds on the peak-to-peak noise attenuation, in regards to the induced l[subscript infinity symbol] gain of the closed loop . This result is obtained by constructing a new class of storage functions that can be employed to verify the dissipativity of the closed loop system with respect to a suitable supply rate function. In the second part of the thesis, we examine the trade-off between the closed loop performances and the required rate of the channel. While the digital channel imposes some limitations on the achievable induced l[subscript infinity symbol] gain, we show how the performances of the proposed scheme can still approximate those achievable without communication constraints provided that the rate of the channel is large enough. A numerical optimization problem is then devised to design the parameters of the control scheme in order to minimize the strain on the channel while matching some prescribed constraints on the closed loop induced l[subscript infinity symbol] gain.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 139-143).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/103717
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.