Show simple item record

dc.contributor.advisorJing Kong.en_US
dc.contributor.authorFang, Wenjing, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-07-18T20:04:16Z
dc.date.available2016-07-18T20:04:16Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103724
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 156-165).en_US
dc.description.abstractThe aim of this thesis is two-fold: the first is to develop a reliable method for synthesizing bilayer graphene using chemical vapor deposition (CVD) method and to understand the growth mechanism. The second part involves exploring methods of synthesizing hexagonal boron nitride (hBN). The successful isolation of monolayer graphene in 2004 has attracted many researchers to search for potential applications of graphene and other two-dimensional materials in electronic and optical devices. However, the Scotch-tape method sets contraints for such applications due to the limited size and randomized location of obtained flakes. Thus, synthesizing large-area, high-quality two dimensional materials is highly desirable. This thesis seeks to develop a method to produce both bilayers and hBN with large area by CVD method and to investigate the underlying growth mechanisms for better control over the thickness, uniformity and stacking orientation.en_US
dc.description.statementofresponsibilityby Wenjing Fang.en_US
dc.format.extent165 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSynthesis of bilayer graphene and hexagonal boron nitride by chemical vapor deposition methoden_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.identifier.oclc953416424en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record