Show simple item record

dc.contributor.advisorRonald G. Ballinger.en_US
dc.contributor.authorJarvis, Jennifer Anneen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2016-07-18T20:04:45Z
dc.date.available2016-07-18T20:04:45Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103730
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 291-297).en_US
dc.description.abstractCorrosion and hydrogen pickup of zirconium alloy fuel cladding in water cooled nuclear reactors are life-limiting phenomena for fuel. This thesis studies the fate of hydrogen liberated by waterside corrosion of Zircaloy-4 fuel cladding in Pressurized Water Reactors (PWRs): are the adsorbed protons incorporated into the oxide and eventually the metal, or are they evolved into molecular hydrogen and released into the coolant? Water chemistry modeling was used to understand effects of radiolysis and CRUD. Density functional theory (DFT) was used to investigate the role of oxidized Zr(Fe,Cr)2 second phase particles. Chemical potentials and the electron chemical potential were used to connect these two modeling efforts. A radiolysis model was developed for the primary loop of a PWR. Dose profiles accounting for fuel burnup, boron addition, axial power profiles, and a CRUD layer were produced. Dose rates to the bulk coolant increased by 21-22% with 12.5-75 pim thick CRUD layers. Radially-averaged core chemistry was compared to single-channel chemistry at individual fuel rods. Calculations showed that local chemistry was more oxidizing at high-power fuel and fuel with CRUD. Local hydrogen peroxide concentrations were up to 2.5 ppb higher than average levels of 5-8 ppb. Radiolysis results were used to compute chemical potentials and the corrosion potential. Marcus theory was applied to compare the band energies of oxides associated with Zircaloy-4 and the energy levels for proton reduction in PWR conditions. Hydrogen interactions with Cr203 and Fe203, both found in oxidized precipitates, were studied with DFT. Atomic adsorption of hydrogen was modeled on the Cr and Feterminated (0001) surfaces. Climbing Image-Nudged Elastic Band calculations were used to model the competing pathways of hydrogen migration into the subsurface and molecular hydrogen formation. A two-step mechanism for hydrogen recombination was identified consisting of: reduction of an adsorbed proton (H+) to a hydride ion (H-) and H2 formation from an adjacent adsorbed proton and hydride ion. Overall, results suggest that neither surface will be an easy entrance point for hydrogen ingress and that Cr203 is more likely to be involved in hydrogen evolution than the Fe203.en_US
dc.description.statementofresponsibilityby Jennifer Anne Jarvis.en_US
dc.format.extent318 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleHydrogen entry in Zircaloy-4 fuel cladding : an electrochemical studyen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc953419330en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record