Show simple item record

dc.contributor.advisorPaola Cappellaro.en_US
dc.contributor.authorHirose, Masashi, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2016-07-18T20:04:50Z
dc.date.available2016-07-18T20:04:50Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103731
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 101-113).en_US
dc.description.abstractThe precise control of a system which behaves according to the principles of quantum mechanics is an essential task in order to fully harness the unique properties of quantum mechanics, such as superposition and entanglement, for practical applications. Leveraging the quantum nature of the system would enable, for example, the implementation of quantum computation and quantum metrology. However, any realistic quantum system is inevitably coupled to its environment. The interaction with its surroundings irrevocably destroys the quantum nature of the system: mitigating decoherence is thus one of the central problems in quantum control. In this thesis, we develop novel control methods to protect a qubit from decoherence by two distinct approaches, and demonstrate them experimentally using the nitrogen-vacancy (NV) center in diamond. The first approach rests on an open-loop control scheme and is tailored to improve quantum sensing tasks. We develop a continuous dynamical decoupling (CoDD) method that allows us to tune the degree of protection from a dephasing environment. Exploiting this flexibility, we show that the CoDD can be used to measure magnetic fields with sensitivity comparable to existing methods, while providing superior versatility in practical experimental settings. This protocol can adapt to various sensing conditions that might occur in biological and materials science such as measurement time and sensitive frequency. The second approach exploits a coherent feedback protocol. We take advantage of a long-lived nuclear spin as an ancillary spin to protect the qubit of interest from decoherence. We show that the protocol protects the qubit as long as open-loop dynamical decoupling control schemes and it can be used against more general types of noise than the open-loop protocol. This method thus offers an alternative protocol to protect the qubit from decoherence in quantum computation and quantum metrology.en_US
dc.description.statementofresponsibilityby Masashi Hirose.en_US
dc.format.extent113 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleQuantum control of spin systems in diamonden_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc953419400en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record