MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational perception of physical object properties

Author(s)
Wu, Jiajun, Ph.D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.287Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
William T. Freeman and Joshua B. Tenenbaum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We study the problem of learning physical object properties from visual data. Inspired by findings in cognitive science that even infants are able to perceive a physical world full of dynamic content at a early age, we aim to build models to characterize object properties from synthetic and real-world scenes. We build a novel dataset containing over 17, 000 videos with 101 objects in a set of visually simple but physically rich scenarios. We further propose two novel models for learning physical object properties by incorporating physics simulators, either a symbolic interpreter or a mature physics engine, with deep neural nets. Our extensive evaluations demonstrate that these models can learn physical object properties well and, with a physic engine, the responses of the model positively correlate with human responses. Future research directions include incorporating the knowledge of physical object properties into the understanding of interactions among objects, scenes, and agents.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 49-50).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/103736
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.