Show simple item record

dc.contributor.advisorAngela M. Belcher.en_US
dc.contributor.authorBardhan, Neelkanth Manojen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2016-08-02T20:08:15Z
dc.date.available2016-08-02T20:08:15Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103848
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractWith the emerging need for advanced sensing and imaging capabilities in personalized healthcare, there has been motivation to develop new classes of nanomaterials; with performance vastly superior to existing technologies. In this work, we explore the one- and two-dimensional forms of carbon nanomaterials, namely, single-walled carbon nanotubes (SWNTs), and graphene derivatives (graphene oxide, or GO), for their remarkable potential in biomedical imaging and sensing. This thesis presents three functional applications, along with the necessary processing at the interface of nanotechnology and biomaterials required to achieve the desired set of properties enabling these applications. First, we attempt to address the rise in antibiotic-resistant bacterial infections by developing a nano-probe for targeted sensing, with potential for early, non-invasive diagnosis of infectious diseases through optical imaging. Using genetically engineered M13 bacteriophage, we synthesize biologically-functionalized, aqueous-dispersed SWNTs, for actively-targeted, modularly-tunable, high-contrast, highly-specific detection of deep-tissue pathogenic infections, at an order-of-magnitude lower dosage compared to other probes reported in literature. Second, we investigate the role of guided surgery in enhancing the survival lifespan of patients with gynecological cancers. We deploy a combination of targeted SWNT probes, along with a custom-designed real-time intraoperative imaging system, which offers sub-millimeter resolution at a sensitivity over 93%. Using image-guided surgery in a mouse model of ovarian cancer, compared to the control group receiving non-guided surgery we report improvement in the median survival by 40%, with large societal benefit expected upon clinical translation. Third, we develop a scalable, one-step mild thermal annealing treatment for enhancing the properties of graphene derivatives, with no chemical treatments involved, while preserving the rich oxygen framework in GO unlike current protocols used in literature. This treatment provides a handle to control the spatial distribution of oxygen functional groups on the graphene basal plane. Using nano-bodies decorated on our treated GO substrate, we report 38% increase in the efficiency of cell capture from whole blood, compared to conventional sensors using as-synthesized GO. Finally, we discuss challenges in moving the field forward, and provide a brief glimpse into the next-generation imaging technologies currently under development, which are generally applicable to a much broader class of materials.en_US
dc.description.statementofresponsibilityby Neelkanth Manoj Bardhan.en_US
dc.format.extent205 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleTwo-dimensional exploration of two-dimensional carbon : imaging and sensing applicationsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc953875018en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record