MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photonic quantum computers and communication systems

Author(s)
Mower, Jacob
Thumbnail
DownloadFull printable version (15.06Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Dirk Englund.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Quantum information processors have been proposed to solve classically intractable or unsolvable problems in computing, sensing, and secure communication. There has been growing interest in photonic implementations of quantum processors as they offer relatively long coherence lengths, precise state manipulation, and efficient measurement. In this thesis, we first present experimental techniques to generate on-chip, photonic quantum processors and then discuss protocols for fast and secure quantum communication. In particular, we describe how -to combine the outputs of multiple stochastic single-photon sources using a photonic integrated circuit to generate an efficient source of single photons. We then show designs for silicon-based quantum photonic processors that can be programmed to implement a large class of existing quantum algorithms and can lead to quicker testing of new algorithms than was previously possible. We will then present the integration of large numbers of high-efficiency, low-timing jitter single-photon detectors onto a silicon photonic integrated circuit. To conclude, we will present a quantum key distribution protocol that uses the robust temporal degree of freedom of entangled photons to enable fast, secure key exchange, as well as experimental results for implementing key distribution protocols using silicon photonic integrated circuits.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 123-137).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/103851
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.