Show simple item record

dc.contributor.advisorTonio Buonassisi.en_US
dc.contributor.authorChakraborty, Rupaken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-09-13T18:07:53Z
dc.date.available2016-09-13T18:07:53Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104128
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 126-137).en_US
dc.description.abstractTin (II) sulfide (SnS) is a promising Earth-abundant, non-toxic alternative to commercially available thin-film photovoltaic (PV) materials because of its near-ideal bandgap, high absorption coefficient, and potential for facile manufacturing. However, SnS-based photovoltaic devices have reached a maximum experimental efficiency of only 4.4%, compared to a theoretical maximum of 32%, primarily due to a low minority-carrier lifetime. In this work, I assess the impact of structural defects and anisotropy on the minority-carrier lifetime and other key device parameters, shedding light on the path to high-efficiency SnS-based photovoltaics. SnS thin films are deposited by thermal evaporation in a range of growth temperatures with varying structural defect density. Extended structural defects including intragranular defects and grain boundaries are directly related to minority-carrier collection length using high-resolution correlative electron microscopy. The results suggest that intragranular point defects, as opposed to extended structural defects, are likely responsible for the short minority-carrier lifetimes in present-day SnS films. Inhomogeneities in the polycrystalline SnS thin films due to the anisotropic material properties of SnS may also impact the device performance. Device simulations taking into account the orientation-dependent electron affinity of SnS show that a uniform grain orientation distribution is optimal. As a route toward both uniform grain orientation and low structural defect density, the anisotropic surface energy of SnS is harnessed by growth on a van der Waals-terminated substrate. An enhancement in both orientation uniformity and minority-carrier lifetime is measured, showing a promising path toward the ideal SnS film. Lastly, the process of optimization to reduce structural defect density may be expedited by in-situ characterization of micro- and nanoscale defects under realistic processing conditions. Toward this end, an in-situ temperature stage for synchrotron X-ray spectromicrosopy is developed to track nanoscale defects up to a sample temperature of 600°C. The stage enables previously unattainable in-situ studies of defect kinetics, allowing both a deeper understanding of how process conditions affect defect characteristics and the ability to rapidly optimize process conditions toward a defect-free film.en_US
dc.description.statementofresponsibilityby Rupak Chakraborty.en_US
dc.format.extent137 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleStructural defect engineering of tin (II) sulfide thin films for photovoltaicsen_US
dc.title.alternativeStructural defect engineering of SnS thin films for photovoltaicsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc958145275en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record