Show simple item record

dc.contributor.advisorWai K. Cheng.en_US
dc.contributor.authorRodríguez, Juan Felipeen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-09-13T18:08:06Z
dc.date.available2016-09-13T18:08:06Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104130
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 200-208).en_US
dc.description.abstractAs the CO2 emission standards around the world become more stringent, the turbocharged downsized gasoline direct injection (GDI) engine provides a mature platform to achieve better fuel economy. For this reason, it is expected that the GDI engine will capture increasing shares of the market during the coming years. The in-cylinder liquid injection, though advantageous in most engine operation regimes, creates emissions challenges during the cold crank-start and cold fast-idle phases. The engine cold-start is responsible for a disproportionate share of the hydrocarbons (HC), nitrogen oxides (NOx) and particulate matter (PM) emitted over the certification cycle. Understanding the sources of the pollutants during this stage is necessary for the further market penetration of GDI under the constraint of tighter emission standards. This work aims to examine the formation processes of the HC, NOx and PM emissions during the cold-start phase in a GDI engine, and the sensitivity of the pollutant emissions to different operation strategies. To this end, a detailed analysis of the crank-start was carried out, in which the first three engine cycles were individually examined. For the steady-state phase, the trade-off between low fast-idle emissions and high exhaust thermal enthalpy flow, necessary for fast catalyst warm-up, is investigated under several operation strategies. The pollutant formation processes are strongly dependent on the mixture formation and on the temperature and pressure history of the combustion process. The results show that unconventional valve timing strategies with large, symmetric, negative valve overlap and delayed combustion phasing are the most effective ways to reduce engine-out emissions during both crank-start and fast-idle phases.en_US
dc.description.statementofresponsibilityby Juan Felipe Rodríguez.en_US
dc.format.extent211 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleInvestigations on the pollutant emissions of gasoline direct injection engines during cold-starten_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc958148024en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record