Show simple item record

dc.contributor.advisorTonio Buonassisi.en_US
dc.contributor.authorBerney Needleman, Daviden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-09-13T18:08:25Z
dc.date.available2016-09-13T18:08:25Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104133
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 97-107).en_US
dc.description.abstractTo minimize the risk of catastrophic climate change, about ten terawatts of photovoltaics must be deployed in the next fifteen years. Reaching this target will require dramatic reductions in the cost and capital intensity of manufacturing photovoltaic modules coupled with a significant increase in module efficiency. The majority of the factory and equipment costs to produce the crystalline silicon modules that account for over 90% of modules sold today are for production of silicon wafers. While lower-cost wafers can be produced with cheaper equipment, the efficiency of modules incorporating these wafers is limited by the presence of structural defects, like grain boundaries and dislocations, that are absent from more expensive alternatives. This thesis presents a methodology to quantify the technology innovations necessary to reach climate-driven deployment targets for photovoltaics and shows an analysis based on current commercial technology incorporating monocrystalline silicon absorbers. Then, a model for the electrical activity of dislocations and grain boundaries and a methodology for incorporating this model into technology computer aided design (TCAD) simulations of high-efficiency solar cells are presented. The model and method are validated by comparison to analysis of the material properties and device performance of silicon solar cells containing structural defects. TCAD simulations across a wide range of defect concentrations and distributions are used to determine the material requirements for low-cost silicon containing structural defects to approach the performance of expensive, structural defect-free silicon in several high-efficiency solar cell architectures. Aspects of device design that mitigate the impact of these defects, notably higher injection-levels of electronic carriers, are identified.en_US
dc.description.statementofresponsibilityby David Berney Needleman.en_US
dc.format.extent107 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titlePerformance limits of silicon solar cells due to structural defectsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc958149396en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record