Show simple item record

dc.contributor.advisorMoshe E. Ben-Akiva and Francisco C. Pereira.en_US
dc.contributor.authorZhang, Haizheng, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-09-13T18:10:04Z
dc.date.available2016-09-13T18:10:04Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104148
dc.descriptionThesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2016.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 83-86).en_US
dc.description.abstractThe calibration (estimation of inputs and parameters) for dynamic traffic assignment (DTA) systems is a crucial process for traffic prediction accuracy, and thus critical to global traffic management applications to reduce traffic congestion. In support of the real-time traffic management, the DTA calibration algorithm should also be online, in terms of: 1) estimating inputs and parameters in a time interval only based on data up to that time; 2) performing calibration faster than real-time data generation. Generalized least squares (GLS) methods and Kalman filter-based methods are proved useful in online calibration. However, in literature, the road networks selected to test online calibration algorithms are usually simple and have small number of parameters. Thus their effectiveness when applied to high dimensions and large networks is not well proved. In this thesis, we implemented the extended Kalman filter (EKF) and tested it on the Singapore expressway network with synthetic data that replicate real world demand level. The EKF is diverging and the DTA system is even worse than when no calibration is applied. The problem lies in the truncation process in DTA systems. When estimated demand values are negative, they are truncated to 0 and the overall demand is overestimated. To overcome this problem, this thesis presents a modified EKF method, called constrained EKF. Constrained EKF solves the problem of over-estimating the overall demand by imposing constraints on the posterior distribution of the state estimators and obtain the maximum a posteriori (MAP) estimates within the feasible region. An algorithm of iteratively adding equality constraints followed by the coordinate descent method is applied to obtain the MAP estimates. In our case study, this constrained EKF implementation added less than 10 seconds of computation time and improved EKF significantly. Results show that it also outperforms GLS, probably because its inherent covariance update procedure has an advantage of adapting changes compared to fixed covariance matrix setting in GLS. The contributions of this thesis include: 1) conducting online calibration algorithms on a large network with relatively high dimensional parameters, 2) identifying drawbacks of a widely applied solution for online DTA calibration in a large network, 3) improving an existing algorithm from non-convergence to great performance, 4) proposing an efficient and simple method for the improved algorithm, 5) attaining better performance than an existing benchmark algorithm.en_US
dc.description.statementofresponsibilityby Haizheng Zhang.en_US
dc.format.extent86 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleConstrained extended Kalman filter : an efficient improvement of calibration for dynamic traffic assignment modelsen_US
dc.title.alternativeConstrained EKF : an efficient improvement of calibration for DTA modelsen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Transportationen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc958279022en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record