MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic and molecular studies of cell-autonomous execution during programmed cell death in C. elegans

Author(s)
Driscoll, Kaitlin B. (Kaitlin Bridget)
Thumbnail
DownloadFull printable version (9.660Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
H. Robert Horvitz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Apoptosis or programmed cell death was originally defined by evolutionarily conserved morphological characteristics that include shrinkage of cell volume and chromatin condensation. Apoptosis functions as a highly controlled mechanism for the elimination of unwanted or damaged cells and is essential for disease prevention. Apoptotic cell death is a cell-autonomous process driven by the caspase family of cysteine proteases. The discovery of the CED-3 caspase in C. elegans led to the paradigm that caspase cleavage of substrates drives cell death and promotes engulfment. While many caspase substrates have been identified, it is not well understood how caspase substrates act to promote cell death and engulfment. The control of caspase activation in C. elegans is conserved among metazoans and involves the interplay of pro and anti-apoptotic BCL-2 and BH3-only family proteins. In C. elegans an increase in apoptotic cell refractility observed by Nomarski optics is one of the hallmark morphological characteristics of apoptosis. We found that the presumptive TRP channel CED-1 1 acts downstream of caspase activation in apoptotic cells to drive the increase in refractility. We discovered that CED-1 1 is also required for a decrease in cell volume and increase in nuclear permeability of apoptotic cells. We showed that CED-1 1 is required for efficient degradation of apoptotic cells and facilitates the death process, suggesting that the decrease in cell volume and/or increase in nuclear permeability could promote the death and degradation of the cell. We conclude that CED-1 1 acts downstream of caspase activation to effect multiple observed changes to apoptotic cells and to facilitate death and degradation. In addition we investigated the anti-apoptotic function of the generally pro-apoptotic BCL-2 homolog CED-9.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104177
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.