Show simple item record

dc.contributor.advisorYang Shao-Horn.en_US
dc.contributor.authorHong, Wesley T. (Wesley Terrence)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2016-09-13T19:09:56Z
dc.date.available2016-09-13T19:09:56Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104185
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 143-160).en_US
dc.description.abstractUnderstanding and mastering the kinetics of oxygen electrocatalysis is instrumental to enabling solar fuels, fuel cells, electrolyzers, and metal-air batteries. Non-precious transition metal oxides show promise as cost-effective materials in such devices. Leveraging the wealth of solid-state physics understanding developed for this class of materials in the past few decades, new theories and strategies can be explored for designing optimal catalysts. This work presents a framework for the rational design of transition-metal perovskite oxide catalysts that can accelerate the development of highly active catalysts for more efficient energy storage and conversion systems. We describe a method for the synthesis of X-ray emission, absorption, and photoelectron spectroscopy data to experimentally determine the electronic structure of oxides on an absolute energy scale, as well as extract key electronic parameters associated with the material. Using this approach, we show that the charge-transfer energy - a parameter that captures the energy configuration of oxygen and transition-metal valence electrons - is a central descriptor capable of modifying both the oxygen evolution kinetics and mechanism. Its role in determining the absolute band energies of a catalyst can rationalize the differences in the electron-transfer and proton-transfer kinetics across oxide chemistries. Furthermore, we corroborate that the charge-transfer energy is one of the most influential parameters on the oxygen evolution reaction through a statistical analysis of a multitude of structure-activity relationships. The quantitative models generated by this analysis can then be used to rapidly screen oxide materials across a wide chemical space for highthroughput materials discovery.en_US
dc.description.statementofresponsibilityby Wesley T. Hong.en_US
dc.format.extent160 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleRational design strategies for oxide oxygen evolution electrocatalystsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc958135469en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record