MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smectite to illite transformation of Gulf of Mexico -Eugene Island (GoM-EI) mudrock

Author(s)
Ge, Chunwei
Thumbnail
DownloadFull printable version (9.224Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
John T. Germaine.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Predicting pore pressure is an important job in the petroleum industry. Standard methods for estimating pressure do not apply to the basin where overpressure is often observed. Compaction disequilibrium and clay mineral diagenesis are recognized as potential contributors to overpressure generation. My research aims to look at the relationship between smectite-to-illite transformation and overpressure generation. The proposed research has two phases. Phase one objective is to study the reaction rate and the conditions such as temperature, time, KCl concentration that induce smectite-to-illite transformation. Phase two study objective is to investigate the change in compressibility and permeability of resedimented GoM-EI mudrock due to smectite-to-illite transformation. This thesis presents the results of phase one study. In phase one study, we have successfully transformed smectite to illite in laboratory environment using GoM-EL as starting material. Based on mineral composition results of cooked samples, it is clearly that illitization goes through three stages. The first stage is that a highly smectitic clay is represented by randomly ordered illite-smectite mixed layer phase (I/S). With increasing reaction, randomly ordered I/S are transformed into regularly interstratified structures. The third stage is that the ordered I/S reacts to a final discrete illite. Additional thermal gravimetric analysis (TGA) study on cooked samples confirms that the transformation is releasing water. However, we are unable to determine the volume change of the sample using mineral study.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 93-94).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104201
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.