Show simple item record

dc.contributor.advisorYuriy Román-Leshkov.en_US
dc.contributor.authorHunt, Sean Thomasen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemical Engineering.en_US
dc.date.accessioned2016-09-13T19:12:29Z
dc.date.available2016-09-13T19:12:29Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104207
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 231-249).en_US
dc.description.abstractThe noble metals (NMs) comprise ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), iridium (Ir), platinum (Pt), and gold (Au). Together, these corrosion-resistant elements serve as nature's universal catalysts by binding reactant molecules neither too strongly nor too weakly. This allows for rapid catalytic transformations of reactants into useful products. Modern society, its current technologies, and its emerging renewable energy technologies are underpinned by precious metal catalysts. However, the noble metals are the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. Furthermore, the traditional catalyst engineering toolkit is ill-equipped to optimize the reactivity, stability, and loading of NM catalysts. The technologies developed in this thesis have two overarching implications. First, a method is developed to engineer non-sintered and metal-terminated transition metal carbide (TMC) nanoparticles. Featuring "noble metal-like" surface reactivity, TMCs are earth-abundant and exhibit many useful catalytic properties, such as carbon monoxide and sulfur tolerance. By designing TMC nanoparticles with controlled surface properties, this thesis offers new avenues for replacing noble metal catalysts with inexpensive alternatives. Second, a method is developed to synthesize TMC nanoparticles coated with atomically-thin noble metal monolayers. This offers new directions for improved catalyst designs by substantially enhancing reactivity and stability while reducing overall noble metal loadings. These synthetic achievements in nanoscale core-shell catalyst engineering were guided by computational quantum chemistry, model thin film studies, and advanced spectroscopic techniques. Examination of the catalytic utility of these new materials was performed in the context of water electrolysis, proton exchange membrane fuel cells, direct methanol fuel cells, and high temperature thermal reforming.en_US
dc.description.statementofresponsibilityby Sean Thomas Hunt.en_US
dc.format.extent258 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemical Engineering.en_US
dc.titleEngineering carbide nanoparticles coated with noble metal monolayers for catalysisen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc958138460en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record