MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of a constraint device for compliant bodies using quasi-conformal contact surfaces as applied to mouse imaging

Author(s)
Du, Lucy W
Thumbnail
DownloadFull printable version (16.55Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Martin L. Culpepper.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The purpose of this work is the modeling and prototyping of quasi-conformal constraint contacts and the investigation of their positioning ability for compliant bodies, specifically for the holding of mice in optical imaging setups. The direct application of this work is the restraint of laboratory mice for biological imaging of micron- and submicron-scale biological structures. No existing research has measured the shear stiffness of mouse facial tissue or modeled the effect of quasi-conformal contact constraints on nonlinear materials. The constraint devices and techniques currently available for mice have limitations that have prevented further exploration of their biological structures. The theoretical model, design rationale, and testing results of a prototype device utilizing quasi-conformal constraints are presented in this thesis. This device is capable of restraining anesthetized mice to sub-micron movement in all axes of translation, without additional surgery or discomfort to the mouse. With the findings presented in this thesis, the design of further optimized devices can be made-both for anesthetized and awake mice-enabling further studies in bone marrow and neural activity that are currently impossible. This could ultimately lead to breakthroughs in stem cell and neurobiological research.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 99-101).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104291
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.