Show simple item record

dc.contributor.advisorThomas Roemer and Daniel Whitney.en_US
dc.contributor.authorEzolino, Juan Stefanoen_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2016-09-13T19:24:17Z
dc.date.available2016-09-13T19:24:17Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104311
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2016. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionThesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 88-89).en_US
dc.description.abstractThe Widget' industry has changed significantly over the last 20 years. Although Company A benefited from their historically strong market position for a long time, the market share of widgets has, at this point, been evenly divided between Company A and Company B. There is therefore market pressure for Company A to reassess the way it does business to be more competitive. Automation initiatives in the Widget industry have historically been slow to be implemented, and there has been hesitation to change the way widgets and their parts are designed and manufactured due to the complexity of the widget product. But in order to work in a more competitive global market, companies must question many of the established assumptions regarding their products in order to achieve efficiency gains and improve safety standards in their production system. The ultimate goal of the project was to align the design, manufacturing, and business processes with new technology capabilities and the goals of the company. By doing this, the cost of producing a widget would be decreased, while increasing in-process quality and repeatability. This thesis focuses on ways in which to show the value of improving the design of a widget to enable more efficient production systems, while ensuring the risk of injury to the mechanics is continuously lowered through increased process control and standardization. In order to understand what it means for engineers across the company to design parts and assemblies with automated manufacturing processes in mind, a list of high-level technical design principles needed to be developed. A group of 17 design and production engineers was assembled for a workshop, representing all of the widget programs, R&D, Product Development, Fabrication, Engineering Operations, Manufacturing Operations, and IT. Through two days of activities, a list of ten principles was developed that could be applied to any widget part or assembly that was intended to be manufactured through automation. After the Design for Automation (DfA) principles were established and agreed-upon, it was necessary to find ways to effectively implement new tools and methodologies into the established design process.en_US
dc.description.statementofresponsibilityby Juan Stefano Ezolino.en_US
dc.format.extent89 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleDesign for automation in manufacturing systems and processesen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M. in Engineering Systemsen_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc958278965en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record