Show simple item record

dc.contributor.advisorBruce G. Cameron and Roy Welsch.en_US
dc.contributor.authorStowe, James DeWitten_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2016-09-27T15:14:39Z
dc.date.available2016-09-27T15:14:39Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104388
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2016. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionThesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2016. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 105-107).en_US
dc.description.abstractIn 2003 Kiva Systems (now Amazon Robotics) introduced a new type material handling automation to the world. The system is based on the principle that the physical infrastructure that contains inventory should be mobile. Kiva achieved this remarkable advancement by employing a fleet of robots to move shelving to human operators. Broadly, these types of systems are defined in the literature as multi-agent robotic systems. Amazon acquired Kiva Systems in 2012 to incorporate the technology into their operations. The goal of this thesis is to optimize the throughput of warehouses employing multi-agent robotic automation. It is assumed that extracting inventory from the automated system is the limiting factor in maximizing throughput (i.e. downstream process are unconstrained). Two strategies are advocated: 1) performing velocity segregation of inventory within the automation via a bifurcation between fast selling and slow selling inventory, 2) maximizing pick rates through policies that increase worker retention. It will be shown that velocity segregation increases machine efficiency by increasing the efficiency of delivering inventory to human operators. This assertion will be investigated by developing a theoretical understanding of how inventory velocity impacts machine efficiency and simulating different types of stow strategies impact on system efficiency. It is estimated that some stow strategies can increase machine efficiency by as much as 30%. It will also be shown that the number of man-hours worked by inexperienced pickers explains practically all of the variability of aggregate pick cycle times and hence pick rates, which motivates the argument for worker retention. Together, these two modifications are estimated to increase throughput by 10% over current baseline.en_US
dc.description.statementofresponsibilityby James DeWitt Stowe.en_US
dc.format.extent107 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleThroughput optimization of multi-agent robotic automated warehousesen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M. in Engineering Systemsen_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentSloan School of Management
dc.identifier.oclc958267045en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record