Show simple item record

dc.contributor.advisorTauhid Zaman and David Simchi-Levi.en_US
dc.contributor.authorHolbrook, Blair Satoen_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2016-09-27T15:15:06Z
dc.date.available2016-09-27T15:15:06Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104397
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2016. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionThesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2016. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 38).en_US
dc.description.abstractNike Always Available (AA) is a significant global business unit within Nike that allows retail customers to purchase athletic essentials at weekly replenishment intervals and 95% availability. However, demand fluctuations and current forecasting processes have resulted in frequent stock-outs and inventory surpluses, which in turn affect revenue, profitability, and brand trust. Potential root causes for demand fluctuations have included: -- Erratic customer behavior, including unplanned promotional events, allocation of open-to- buy dollars for futures (i.e., contract) versus replenishment (i.e., AA), and product inventory loading to protect from anticipated stock-outs; -- Lack of incentives and accountability to encourage accurate forecasting by customers. Current forecasting processes, which utilize historical sell-in data (i.e., product sold to retail customers) were found to be significantly inaccurate - 100% MAPE. The goal of this project was to develop a more accurate forecast based on historical sell-through data (i.e., product sold to consumers), which were recently made available. Forecast error was drastically reduced using the new forecasting method - 35% MAPE. A pilot was initiated with a major retail customer in order to test the new forecast model and determine the effects of a more transparent ordering partnership. The pilot is ongoing at the time of thesis completion.en_US
dc.description.statementofresponsibilityby Blair Sato Holbrook.en_US
dc.format.extent38 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titlePoint-of-sale demand forecastingen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M. in Engineering Systemsen_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentSloan School of Management
dc.identifier.oclc958269635en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record