Show simple item record

dc.contributor.advisorJonathan A. Kelner.en_US
dc.contributor.authorLee, Yin Taten_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2016-09-30T18:25:02Z
dc.date.available2016-09-30T18:25:02Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104467
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 443-458).en_US
dc.description.abstractIn this thesis, we revisit three algorithmic techniques: sparsification, cutting and collapsing. We use them to obtain the following results on convex and combinatorial optimization: --Linear Programming: We obtain the first improvement to the running time for linear programming in 25 years. The convergence rate of this randomized algorithm nearly matches the universal barrier for interior point methods. As a corollary, we obtain the first ... time randomized algorithm for solving the maximum flow problem on directed graphs with m edges and n vertices. This improves upon the previous fastest running time of achieved over 15 years ago by Goldberg and Rao. --Maximum Flow Problem: We obtain one of the first almost-linear time randomized algorithms for approximating the maximum flow in undirected graphs. As a corollary, we improve the running time of a wide range of algorithms that use the computation of maximum flows as a subroutine. --Non-Smooth Convex Optimization: We obtain the first nearly-cubic time randomized algorithm for convex problems under the black box model. As a corollary, this implies a polynomially faster algorithm for three fundamental problems in computer science: submodular function minimization, matroid intersection, and semidefinite programming. --Graph Sparsification: We obtain the first almost-linear time randomized algorithm for spectrally approximating any graph by one with just a linear number of edges. This sparse graph approximately preserves all cut values of the original graph and is useful for solving a wide range of combinatorial problems. This algorithm improves all previous linear-sized constructions, which required at least quadratic time. --Numerical Linear Algebra: Multigrid is an efficient method for solving large-scale linear systems which arise from graphs in low dimensions. It has been used extensively for 30 years in scientific computing. Unlike the previous approaches that make assumptions on the graphs, we give the first generalization of the multigrid that provably solves Laplacian systems of any graphs in nearly-linear expected time.en_US
dc.description.statementofresponsibilityby Yin Tat Lee.en_US
dc.format.extent458 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleFaster algorithms for convex and combinatorial optimizationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc958830506en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record