Show simple item record

dc.contributor.advisorYoussef M. Marzouk.en_US
dc.contributor.authorMusolas Otaño, Antoni M. (Antoni Maria)en_US
dc.contributor.otherMassachusetts Institute of Technology. Computation for Design and Optimization Program.en_US
dc.date.accessioned2016-09-30T19:35:29Z
dc.date.available2016-09-30T19:35:29Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104557
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 80-83).en_US
dc.description.abstractImprovements in technology, autonomy, and positioning mechanisms have greatly broadened the range of application of unmanned aerial vehicles. These vehicles are now being used in aerial photography, package delivery, infrastructure inspection, and many other areas. Many of these uses demand new techniques for path planning in complex environments-in particular, spatially heterogeneous and time-evolving wind fields [22, 23, 24]. Navigating and planning [26, 25, 28, 12] in wind fields requires reliable and fast predictive models that quantify uncertainty in future wind velocities, and benefits strongly from the ability to incorporate onboard and external wind field measurements in real time. To make real-time inference and prediction possible, we construct simple hierarchical Gaussian models of the wind field as follows. Given realizations of the wind field over a domain of interest, obtained from detailed offline measurements or computational fluid dynamic simulations, we extract empirical estimates of the mean and covariance functions. The associated covariance matrices are anisotropic and non-stationary, and capture interactions among the wind vectors at all points in a discretization of the domain. We make the further assumption that, given a particular prevailing wind heading, the local wind velocities are jointly Gaussian. The result is a hierarchical Gaussian model in which the mean and covariance are functions of the prevailing wind conditions. Since these empirical covariances are known only for a few prevailing wind conditions, we close our model by interpolating covariance matrices on the appropriate manifold of positive semi-definite matrices [44], via a computationally efficient construction that takes advantage of low-rank structure. Finally, assimilation of successive point observations is conducted by embedding a standard Kalman filter within a hierarchical Bayesian inference framework. This representation will then be used for wind field exploitation.en_US
dc.description.statementofresponsibilityby Antoni M. Musolas Otaño.en_US
dc.format.extent83 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectComputation for Design and Optimization Program.en_US
dc.titleHierarchical Gaussian models for wind field estimation and path planningen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computation for Design and Optimization Program
dc.identifier.oclc958639031en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record