Show simple item record

dc.contributor.advisorElfatih A. B. Eltahir.en_US
dc.contributor.authorQiu, Xin, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Computation for Design and Optimization Program.en_US
dc.coverage.spatialfw-----en_US
dc.date.accessioned2016-09-30T19:35:39Z
dc.date.available2016-09-30T19:35:39Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104560
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 73-76).en_US
dc.description.abstractThis thesis consists of a simulation-based study and a data visualization framework development focusing on malaria transmission in West Africa. The simulation-based study introduces the concept of hysteresis in malaria transmission, which is defined as the dependence of malaria transmission on initial conditions of the system, characterizing the dry season. The simulation results confirm that the hysteresis effect does exist in malaria transmission demonstrated in the significant effects of initial prevalence and immunity level of the population. The persistence of the hysteresis effect is stronger in a relatively high transmission environment than in low transmission environments. In addition, the study highlights the importance of sustainable malaria control and resource allocation in the reduction of malaria transmission. It illustrates that exposure-reduction malaria control programs like the distribution of insecticide-treated nets (ITNs) will result in a loss of acquired immunity for the population. If the ITN coverage is discontinued after a period of time, relatively strong malaria resurgence will occur. This thesis also presents a web-based mapping and visualization tool for spatio-temporal data like malaria transmission predictions. The framework is developed using open source software and is not only interactive but also web-based; hence, it can deliver spatio-temporal data to the public more effectively than traditional applications. The tool contains the following two main components: the visualization interface and the interactive maps. When the user interacts with the tool, such as clicking on the map, relevant graphics and numerical data will be requested and displayed in the visualization interface. The interactive map, facilitated by animation controls, allows users to view map animations and explore how different climate and malaria transmission data changes over time and space. The visualization framework itself is customizable and has also been used to publish and visualize temperature projections in Southwest Asia.en_US
dc.description.statementofresponsibilityby Xin Qiu.en_US
dc.format.extent76 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectComputation for Design and Optimization Program.en_US
dc.titleSimulation and visualization of malaria transmission In West Africaen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computation for Design and Optimization Program
dc.identifier.oclc958652392en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record