MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mirror symmetry and the K theory of a p-adic group

Author(s)
Vaintrob, Dmitry
Thumbnail
DownloadFull printable version (3.289Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Roman Bezrukavnikov.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Let G be a split, semisimple p-adic group. We construct a derived localization functor Loc : ... from the compactified category of [BK2] associated to G to the category of equivariant sheaves on the Bruhat-Tits building whose stalks have finite-multiplicity isotypic components as representations of the stabilizer. Our construction is motivated by the "coherent-constructible correspondence" functor in toric mirror symmetry and a construction of [CCC]. We show that Loc has a number of useful properties, including the fact that the sections ... compactifying the finitely-generated representation V. We also construct a depth </= e "truncated" analogue Loc(e) which has finite-dimensional stalks, and satisfies the property RIP ... V of depth </= e. We deduce that every finitely-generated representation of G has a bounded resolution by representations induced from finite-dimensional representations of compact open subgroups, and use this to write down a set of generators for the K-theory of G in terms of K-theory of its parahoric subgroups.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 59-61).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104578
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.