MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum intertwiners and integrable systems

Author(s)
Sun, Yi, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (13.37Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Pavel Etingof.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present a collection of results on the relationship between intertwining operators for quantum groups and eigenfunctions for quantum integrable systems. First, we study the Etingof-Kirillov Jr. expression of Macdonald polynomials as traces of intertwiners of quantum groups in the Gelfand-Tsetlin basis. In the quasiclassical limit, we obtain a new Harish-Chandra type integral formula for Heckman- Opdam hypergeometric functions. This formula is related to an integral formula appearing in recent work of Borodin-Gorin by integration over Liouville tori of the Gelfand-Tsetlin integrable system. At the quantum level, we obtain a new proof of the branching rule for Macdonald polynomials which transparently relates branching of Macdonald polynomials to branching of quantum group representations. Second, we study traces of intertwiners for quantum affine algebras. In the sl2 case, we show that, when valued in the three-dimensional evaluation representation, such traces converge in a certain region of parameters and provide a representation-theoretic construction of Felder-Varchenko's hypergeometric solutions to the q-KZB heat equation. This gives the first proof that such a trace function converges and resolves the first case of a conjecture of Etingof-Varchenko. As an application, we prove Felder-Varchenko's conjecture that their elliptic Macdonald polynomials are related to Etingof-Kirillov Jr.'s affine Macdonald polynomials. In the general case, we modify the setting of the work of Etingof-Schiffmann-Varchenko to show that traces of such intertwiners satisfy four commuting systems of q-difference equations - the Macdonald-Ruijsenaars, dual Macdonald-Ruijsenaars, q-KZB, and dual q-KZB equations.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 223-229).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104579
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.