Show simple item record

dc.contributor.advisorTobias H. Colding.en_US
dc.contributor.authorLiu, Zihan Hansen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2016-09-30T19:36:54Z
dc.date.available2016-09-30T19:36:54Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104584
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 67-69).en_US
dc.description.abstractIn this thesis, we will introduce a notion of index of shrinkers of the mean curvature flow. We will then prove a gap theorem for the index of rotationally symmetric immersed shrinkers in R3, namely, that such shrinkers have index at least 3, unless they are one of the stable ones: the sphere, the cylinder, or the plane. We also provide a generalization of the result to higher dimensions.en_US
dc.description.statementofresponsibilityby Zihan Hans Liu.en_US
dc.format.extent69 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleThe Morse index of mean curvature flow self-shrinkersen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc958714914en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record