Show simple item record

dc.contributor.advisorSteve Elgar.en_US
dc.contributor.authorMoulton, Melissa (Melissa Root)en_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2016-09-30T19:37:25Z
dc.date.available2016-09-30T19:37:25Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104594
dc.descriptionThesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractHoles and channels were excavated in the surf zone on an ocean beach near Duck, NC, and observations of the subsequent evolution of waves, currents, and the modified seafloor were used to investigate nearshore dynamics. In one set of seafloor perturbation experiments, deep holes with steeply sloping sides were excavated in the inner surfzone seafloor. Observations of the infilling holes were used to make the first field estimates of the surfzone morphological diffusivity, which describes the rate of seafloor smoothing by downslope sediment transport. To improve the temporal resolution of bathymetric estimates, a mapping method was developed to combine infrequent, spatially dense watercraft surveys with continuous, spatially sparse in situ altimeter estimates of the seafloor location. In another set of seafloor perturbation experiments, channels were dredged across the surf zone with the propellers of a landing craft. Alongshore variations in wave breaking caused by the perturbed bathymetry resulted in strong rip currents in the channels under some conditions, whereas alongshore currents bypassed the channels under other conditions. The dynamics of the circulation response for changing wave forcing, bathymetry, and tidal elevation are investigated using the observations, a numerical model, and a parameter based on wave properties and bathymetry.en_US
dc.description.statementofresponsibilityby Melissa Moulton.en_US
dc.format.extent112 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshHydrodynamics Mathematical modelsen_US
dc.titleHydrodynamic and morphodynamic responses to surfzone seafloor perturbationsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc958832868en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record