Show simple item record

dc.contributor.advisorRobert D. van der Hilst.en_US
dc.contributor.authorYu, Chunquan, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2016-09-30T19:37:35Z
dc.date.available2016-09-30T19:37:35Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104597
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractIn this thesis, we developed and applied seismic imaging methods based on teleseismic reflected waves to study discontinuities in the crust and mantle. Specifically, we further developed virtual deep seismic sounding (VDSS) to probe the Moho and we used SS precursors to study mantle transition zone discontinuities. To extend the applicability of VDSS, we developed a source deconvolution scheme to remove complex source signatures of shallow earthquakes. Application of VDSS to data from the North China craton reveals significant lateral variations in crustal thickness. Assuming that the crust was originally uniform, the thick crust beneath the Ordos plateau supports the hypothesis of lower crustal foundering as the mechanism of reactivation of the eastern North China craton. Application of VDSS to the entire western United States suggests significant, but highly variable, mantle contribution to surface topography. Although thermal anomalies are the main contribution to high elevation of the western US cordillera, our results suggest that petrological heterogeneities or dynamic forces must also play a role in mantle buoyancy. To improve mantle transition zone imaging, we developed an array processing technique to remove random and signal-generated noise that contaminating SS precursors. Application of our scheme to data that sample the Central Pacific greatly improves both the travel time picks and amplitude measurements of SS precursors. The observed changes in reflectivity over distance yield density contrast across 410-km and 660-km discontinuities that are well below those in the PREM model. The density and Vs contrasts across the 410-km discontinuity are consistent with upper mantle composition containing 45% olivine, which is intermediate between piclogite and pyrolite models of mantle composition. Lateral variations in density and Vs contrasts across the 660-km discontinuity are observed, perhaps indicating compositional heterogeneities at the base of the mantle transition zone.en_US
dc.description.statementofresponsibilityby Chunquan Yu.en_US
dc.format.extent190 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleImaging of crust and mantle structures with teleseismic reflected wavesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc958836192en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record