## Schur Weyl duality in complex rank

##### Author(s)

Entova Aizenbud, Inna
DownloadFull printable version (7.672Mb)

##### Other Contributors

Massachusetts Institute of Technology. Department of Mathematics.

##### Advisor

Pavel Etingof.

##### Terms of use

##### Metadata

Show full item record##### Abstract

This thesis gives an analogue to the classical Schur-Weyl duality in the setting of Deligne categories. Given a finite-dimensional unital vector space V (i.e. a vector space V with a distinguished non-zero vector 1) we give a definition of a complex tensor power of V. This is an Ind-object of the Deligne category Rep(St) equipped with a natural action of gl(V). This construction allows us to describe a duality between the abelian envelope of the category Rep(St) and a localization of the category Op/t,v (the parabolic category 0 for gl(V) associated with the pair (V, 1)). In particular, we obtain an exact contravariant functor SWt from the category Repab(St) (the abelian envelope of the category Rep(St)) to a certain quotient of the category Op/t v. This quotient, denoted by 0 p/t v, is obtained by taking the full subcategory of Op/t v consisting of modules of degree t, and localizing by the subcategory of finite dimensional modules. It turns out that the contravariant functor SWt makes Op/t v a Serre quotient of the category Repab(St)OP, and the kernel of SWt can be explicitly described. In the second part of this thesis, we consider the case when V = C[infinity] . We define the appropriate version of the parabolic category 0 and its localization, and show that the latter is equivalent to a "restricted" inverse limit of categories Op/t1CN with N tending to infinity. The Schur-Weyl functors SWt,CN then give an anti-equivalence between the category Op[infinity]/t C[infinity]and the category Repab(Se). This duality provides an unexpected tensor structure on the category Op[infinity]/t C[infinity].

##### Description

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016. Cataloged from PDF version of thesis. Includes bibliographical references (pages 207-208).

##### Date issued

2016##### Department

Massachusetts Institute of Technology. Department of Mathematics.##### Publisher

Massachusetts Institute of Technology

##### Keywords

Mathematics.