Schur Weyl duality in complex rank
Author(s)
Entova Aizenbud, Inna
DownloadFull printable version (7.672Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Pavel Etingof.
Terms of use
Metadata
Show full item recordAbstract
This thesis gives an analogue to the classical Schur-Weyl duality in the setting of Deligne categories. Given a finite-dimensional unital vector space V (i.e. a vector space V with a distinguished non-zero vector 1) we give a definition of a complex tensor power of V. This is an Ind-object of the Deligne category Rep(St) equipped with a natural action of gl(V). This construction allows us to describe a duality between the abelian envelope of the category Rep(St) and a localization of the category Op/t,v (the parabolic category 0 for gl(V) associated with the pair (V, 1)). In particular, we obtain an exact contravariant functor SWt from the category Repab(St) (the abelian envelope of the category Rep(St)) to a certain quotient of the category Op/t v. This quotient, denoted by 0 p/t v, is obtained by taking the full subcategory of Op/t v consisting of modules of degree t, and localizing by the subcategory of finite dimensional modules. It turns out that the contravariant functor SWt makes Op/t v a Serre quotient of the category Repab(St)OP, and the kernel of SWt can be explicitly described. In the second part of this thesis, we consider the case when V = C[infinity] . We define the appropriate version of the parabolic category 0 and its localization, and show that the latter is equivalent to a "restricted" inverse limit of categories Op/t1CN with N tending to infinity. The Schur-Weyl functors SWt,CN then give an anti-equivalence between the category Op[infinity]/t C[infinity]and the category Repab(Se). This duality provides an unexpected tensor structure on the category Op[infinity]/t C[infinity].
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016. Cataloged from PDF version of thesis. Includes bibliographical references (pages 207-208).
Date issued
2016Department
Massachusetts Institute of Technology. Department of MathematicsPublisher
Massachusetts Institute of Technology
Keywords
Mathematics.