MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antichains of interval orders and semiorders, and Dilworth lattices of maximum size antichains

Author(s)
Engel Shaposhnik, Efrat
Thumbnail
DownloadFull printable version (4.517Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Richard P. Stanley.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis consists of two parts. In the first part we count antichains of interval orders and in particular semiorders. We associate a Dyck path to each interval order, and give a formula for the number of antichains of an interval order in terms of the corresponding Dyck path. We then use this formula to give a generating function for the total number of antichains of semiorders, enumerated by the sizes of the semiorders and the antichains. In the second part we expand the work of Liu and Stanley on Dilworth lattices. Let L be a distributive lattice, let -(L) be the maximum number of elements covered by a single element in L, and let K(L) be the subposet of L consisting of the elements that cover o-(L) elements. By a result of Dilworth, K(L) is also a distributive lattice. We compute o(L) and K(L) for various lattices L that arise as the coordinate-wise partial ordering on certain sets of semistandard Young tableaux.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 87).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104603
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.