MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fields of rationality of cuspidal automorphic representations

Author(s)
Binder, John (John Robert)
Thumbnail
DownloadFull printable version (5.516Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Sug Woo Shin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis examines questions related to the growth of fields of rationality of cuspidal automorphic representations in families. Specifically, if F is a family of cuspidal automorphic representations with fixed central character, prescribed behavior at the Archimedean places, and such that the finite component [pi] [infinity] has a [Gamma]-fixed vector, we expect the proportion of [pi] [epsilon] F with bounded field of rationality to be close to zero if [Gamma] is small enough. This question was first asked, and proved partially, by Serre for families of classical cusp forms of increasing level. In this thesis, we will answer Serre's question affirmatively by converting the question to a question about fields of rationality in families of cuspidal automorphic GL2(A) representations. We will consider the analogous question for certain sequences of open compact subgroups F in UE/F(n). A key intermediate result is an equidistribution theorem for the local components of families of cuspidal automorphic representations.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 115-120).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104606
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.