Show simple item record

dc.contributor.authorBerezina-Greene, Maria A.
dc.contributor.authorGuinan Jr, John J
dc.date.accessioned2016-10-04T18:33:46Z
dc.date.available2016-10-04T18:33:46Z
dc.date.issued2015-09
dc.date.submitted2015-01
dc.identifier.issn1525-3961
dc.identifier.issn1438-7573
dc.identifier.urihttp://hdl.handle.net/1721.1/104647
dc.description.abstractAccording to coherent reflection theory (CRT), stimulus frequency otoacoustic emissions (SFOAEs) arise from cochlear irregularities coherently reflecting energy from basilar membrane motion within the traveling-wave peak. This reflected energy arrives in the ear canal predominantly with a single delay at each frequency. However, data from humans and animals indicate that (1) SFOAEs can have multiple delay components, (2) low-frequency SFOAE delays are too short to be accounted for by CRT, and (3) “SFOAEs” obtained with a 2nd (“suppressor”) tone ≥2 octaves above the probe tone have been interpreted as arising from the area basal to the region of cochlear amplification. To explore these issues, we collected SFOAEs by the suppression method in guinea pigs and time-frequency analyzed these data, simulated SFOAEs, and published chinchilla SFOAEs. Time-frequency analysis revealed that most frequencies showed only one SFOAE delay component while other frequencies had multiple components including some with short delays. We found no systematic patterns in the occurrence of multiple delay components. Using a cochlear model that had significant basilar membrane motion only in the peak region of the traveling wave, simulated SFOAEs had single and multiple delay components similar to the animal SFOAEs. This result indicates that multiple components (including ones with short delays) can originate from cochlear mechanical irregularities in the SFOAE peak region and are not necessarily indicative of SFOAE sources in regions ≥2 octaves basal of the SFOAE peak region. We conclude that SFOAEs obtained with suppressors close to the probe frequency provide information primarily about the mechanical response in the region that receives amplification, and we attribute the too-short SFOAE delays at low frequencies to distortion-source SFOAEs and coherent reflection from multiple cochlear motions. Our findings suggest that CRT needs revision to include reflections from multiple motions in the cochlear apex.en_US
dc.description.sponsorshipUnited States. National Institute for Deafness and other Communicative Disorders (RO1 DC000235)en_US
dc.description.sponsorshipUnited States. National Institute for Deafness and other Communicative Disorders (R01 DC003687)en_US
dc.description.sponsorshipUnited States. National Institute for Deafness and other Communicative Disorders (T32 DC00038)en_US
dc.description.sponsorshipUnited States. National Institute for Deafness and other Communicative Disorders (P30 DC005209)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Graduate Research Fellowship Program)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10162-015-0543-7en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleStimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulationsen_US
dc.typeArticleen_US
dc.identifier.citationBerezina-Greene, Maria A., and John J. Guinan. “Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations.” Journal of the Association for Research in Otolaryngology 16, no. 6 (September 15, 2015): 679–694.en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.mitauthorGuinan Jr, John J
dc.relation.journalJournal of the Association for Research in Otolaryngologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:41:25Z
dc.language.rfc3066en
dc.rights.holderAssociation for Research in Otolaryngology
dspace.orderedauthorsBerezina-Greene, Maria A.; Guinan, John J.en_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record