Show simple item record

dc.contributor.authorQin, Zhao
dc.contributor.authorFabre, Andrea
dc.contributor.authorBuehler, Markus J
dc.date.accessioned2016-10-06T22:29:44Z
dc.date.available2016-10-06T22:29:44Z
dc.date.issued2013-05
dc.date.submitted2012-04
dc.identifier.issn1292-8941
dc.identifier.issn1292-895X
dc.identifier.urihttp://hdl.handle.net/1721.1/104778
dc.description.abstractThe stability of alpha helices is important in protein folding, bioinspired materials design, and controls many biological properties under physiological and disease conditions. Here we show that a naturally favored alpha helix length of 9 to 17 amino acids exists at which the propensity towards the formation of this secondary structure is maximized. We use a combination of thermodynamical analysis, well-tempered metadynamics molecular simulation and statistical analyses of experimental alpha helix length distributions and find that the favored alpha helix length is caused by a competition between alpha helix folding, unfolding into a random coil and formation of higher-order tertiary structures. The theoretical result is suggested to be used to explain the statistical distribution of the length of alpha helices observed in natural protein structures. Our study provides mechanistic insight into fundamental controlling parameters in alpha helix structure formation and potentially other biopolymers or synthetic materials. The result advances our fundamental understanding of size effects in the stability of protein structures and may enable the design of de novo alpha-helical protein materials.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Young Investigator Programen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipMultidisciplinary University Research Initiative (MURI)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1140/epje/i2013-13053-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleStructure and mechanism of maximum stability of isolated alpha-helical protein domains at a critical length scaleen_US
dc.typeArticleen_US
dc.identifier.citationQin, Zhao, Andrea Fabre, and Markus J. Buehler. “Structure and Mechanism of Maximum Stability of Isolated Alpha-Helical Protein Domains at a Critical Length Scale.” The European Physical Journal E 36.5 (2013): n. pag.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanicsen_US
dc.contributor.mitauthorQin, Zhao
dc.contributor.mitauthorFabre, Andrea
dc.contributor.mitauthorBuehler, Markus J
dc.relation.journalThe European Physical Journal Een_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:36:23Z
dc.language.rfc3066en
dc.rights.holderEDP Sciences, SIF, Springer-Verlag Berlin Heidelberg
dspace.orderedauthorsQin, Zhao; Fabre, Andrea; Buehler, Markus J.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-4173-9659
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record