Show simple item record

dc.contributor.advisorBruce G. Cameron and Edward F. Crawley.en_US
dc.contributor.authorKellari, Demetriosen_US
dc.contributor.otherTechnology and Policy Program.en_US
dc.date.accessioned2016-10-14T14:41:41Z
dc.date.available2016-10-14T14:41:41Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104815
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 135-143).en_US
dc.description.abstractAir travel has advanced greatly since the inception of the first commercially viable airliner in the 1930s, the Douglas DC-3. In the 80 years since then, the number of annual air passengers in the US has increased from 6000 to over 800 million. In order to accommodate this demand growth, civil passenger aircraft architectures have changed over time, investment in aircraft technologies has rapidly increased, and aircraft performance has improved. The historical context of aircraft architectures are analyzed in order to establish trends and precedents for architectural change. This historical analysis is carried out based on a database of 157 architectures from the DC-3 to the Boeing 787, and concludes that historical aircraft architecture changes are mainly driven by selection of engine type. More recently aircraft performance has experienced diminishing returns in terms of efficiently, on the order of 1% reduction in fuel consumption annually since 2010. Meanwhile, according to projections by Airbus and Boeing, air passenger traffic is expected to increase 3.5-4.6% per annum. ICC has recommended that overall energy efficiently be reduced by 2% annually. The rate of increase in demand and decrease in fuel consumption, raises the question of how this goal can be met. Much prior work has been done to optimize design variables within the context of a single aircraft architecture for maximum performance. Additionally optimization of point designs at the corners of the architecture design space has also been extensively examined. Despite the abundance of work in this domain, there has been limited work done to understand the potential trajectories that would cause current architectures to evolve into these potential future architectures. Therefore, the goal of this thesis is to analyze the conditions that could break the current architecture of commercial aircraft. and identify the stringency of policies that could invoke such a disruption. To answer this research question, the major drivers of increasing engine perfor- mance are identified including increasing bypass ratio, increasing overall pressure ratio and turbine inlet temperature, and increasing component efficiently. A hybrid analytical-empirical model is presented optimizing the airframe-engine interactions. This model enables us to quantitatively forecast the impact of four engine technology scenarios on the mission block fuel. Results indicate that for existing airframes, namely the 737 and A320, performance is expected to increase by 6-38% relative to the 737MAX and A320neo within the next 10-14 years, depending on engine technology development. For a new aircraft with the dominant architecture and unconstrained geometry, we expect a performance increase of 17-40% versus an optimized aircraft with current technology. The maximum performance is expected to occur in the next 20-30 years, suggesting that a break in the dominant architecture will occur in this timeframe. Finally, two policy scenarios based on ICAO and IATA targets are shown to incentivize technology development, reduce the uncertainty in performance and architecture predictions, and reduce the time to an expected break in architecture.en_US
dc.description.statementofresponsibilityby Demetrios Kellari.en_US
dc.format.extent199 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleWhat's next for the airliner? : historical analysis and future predictions of aircraft architecture and performanceen_US
dc.title.alternativeHistorical analysis and future predictions of aircraft architecture and performanceen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division.en_US
dc.contributor.departmentTechnology and Policy Program.en_US
dc.identifier.oclc959232610en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record