Show simple item record

dc.contributor.authorWalton, Chelsea
dc.contributor.authorEtingof, Pavel I
dc.date.accessioned2016-10-19T18:01:45Z
dc.date.available2016-10-19T18:01:45Z
dc.date.issued2015-08
dc.date.submitted2014-04
dc.identifier.issn1083-4362
dc.identifier.issn1531-586X
dc.identifier.urihttp://hdl.handle.net/1721.1/104854
dc.description.abstractActions of semisimple Hopf algebras H over an algebraically closed field of characteristic zero on commutative domains were classified recently by the authors in [18]. The answer turns out to be very simple–if the action is inner faithful, then H has to be a group algebra. The present article contributes to the non-semisimple case, which is much more complicated. Namely, we study actions of finite dimensional (not necessarily semisimple) Hopf algebras on commutative domains, particularly when H is pointed of finite Cartan type. The work begins by reducing to the case where H acts inner faithfully on a field; such a Hopf algebra is referred to as Galois-theoretical. We present examples of such Hopf algebras, which include the Taft algebras, uq(sl₂), and some Drinfeld twists of other small quantum groups. We also give many examples of finite dimensional Hopf algebras which are not Galois-theoretical. Classification results on finite dimensional pointed Galois-theoretical Hopf algebras of finite Cartan type will be provided in the sequel, Part II, of this study.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-1000173)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-1102548)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-1401207)en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00031-015-9328-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titlePointed Hopf Actions On Fields, Ien_US
dc.typeArticleen_US
dc.identifier.citationEtingof, Pavel, and Chelsea Walton. “Pointed Hopf Actions On Fields, I.” Transformation Groups vol. 20, no. 4, August 2015, pp. 985–1013.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorEtingof, Pavel I
dc.relation.journalTransformation Groupsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:41:30Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsEtingof, Pavel; Walton, Chelseaen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-0710-1416
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record