MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On dimension reduction in Gaussian filters

Author(s)
Hakkarainen, Janne; Solonen, Antti; Cui, Tiangang; Marzouk, Youssef M
Thumbnail
DownloadMarzouk_On dimension.pdf (433.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
A priori dimension reduction is a widely adopted technique for reducing the computational complexity of stationary inverse problems. In this setting, the solution of an inverse problem is parameterized by a low-dimensional basis that is often obtained from the truncated Karhunen–Loève expansion of the prior distribution. For high-dimensional inverse problems equipped with smoothing priors, this technique can lead to drastic reductions in parameter dimension and significant computational savings. In this paper, we extend the concept of a priori dimension reduction to non-stationary inverse problems, in which the goal is to sequentially infer the state of a dynamical system. Our approach proceeds in an offline–online fashion. We first identify a low-dimensional subspace in the state space before solving the inverse problem (the offline phase), using either the method of 'snapshots' or regularized covariance estimation. Then this subspace is used to reduce the computational complexity of various filtering algorithms—including the Kalman filter, extended Kalman filter, and ensemble Kalman filter—within a novel subspace-constrained Bayesian prediction-and-update procedure (the online phase). We demonstrate the performance of our new dimension reduction approach on various numerical examples. In some test cases, our approach reduces the dimensionality of the original problem by orders of magnitude and yields up to two orders of magnitude in computational savings.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/104940
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Inverse Problems
Publisher
IOP Publishing
Citation
Solonen, Antti et al. “On Dimension Reduction in Gaussian Filters.” Inverse Problems 32.4 (2016): 45003.
Version: Author's final manuscript
ISSN
0266-5611
1361-6420

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.