Show simple item record

dc.contributor.advisorWeifeng Xu.en_US
dc.contributor.authorHwang, Hongiken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2016-10-25T19:50:07Z
dc.date.available2016-10-25T19:50:07Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105027
dc.descriptionThesis: Ph. D. in Biological Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2016.en_US
dc.descriptionCataloged from PDF version of thesis. Vita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractSynaptic plasticity serves as a central molecular mechanism underlying learning and memory formation in the brain. An increase in intracellular calcium concentrations triggered by neuronal activity induces synaptic plasticity, and calmodulin is a key protein that detects the elevated calcium levels and propagates downstream signaling. Neurogranin is a neuron-specific protein that binds to calmodulin and regulates the availability of calmodulin in the postsynaptic compartments of excitatory neurons. Dysregulation of neurogranin has been reported to cause altered synaptic plasticity as well as impairment in hippocampus-dependent learning, and is also associated with the higher risk of developing neurodegenerative and psychiatric diseases. Therefore, it is critical to understand how neurogranin regulates the induction of synaptic plasticity in the brain at the molecular level. The focus of this thesis is to examine how the changes in neurogranin expression levels contribute to the induction of synaptic plasticity in the hippocampus with a spike-timing-dependent plasticity paradigm and to understand the underlying molecular mechanisms. Using lentivirus-mediated manipulations of neurogranin levels in hippocampal CAl neurons, we found that increasing neurogranin levels in CAI neurons prolongs the timing window for spike-timing-dependent long-term potentiation (LTP), whereas acute knockdown of neurogranin inhibits the expression of LTP via regulating PP2B activity. We have also found that neurogranin interferes with calcium-dependent inactivation of neuronal L-type calcium channels and allows a sustained influx of calcium during the membrane depolarization in hippocampal neurons. Our results indicate that dynamic changes in neurogranin levels play a crucial role in setting the threshold for inducing LTP in spike-timing-dependent plasticity in the hippocampus.en_US
dc.description.statementofresponsibilityby Hongik Hwang.en_US
dc.format.extent122 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleMolecular mechanisms of synaptic plasticityen_US
dc.typeThesisen_US
dc.description.degreePh. D. in Biological Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc959555151en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record