MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

TGA-MS studies of the pyrolysis of corn stover for charcoal production

Author(s)
Corrales Sanchez, Tachmajal Marie
Thumbnail
DownloadFull printable version (5.658Mb)
Alternative title
Themogravimetric analysis combined with online mass spectrometry studies of the pyrolysis of corn stover for charcoal production
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Gwyndaf Jones.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
More than two billion people worldwide rely on wood-based fuels for their daily energy needs, which can produce toxic atmospheric contaminants and cause environmental degradation. MIT D-Lab addresses this challenge with "Fuel from the Fields", a simple technique for making charcoal from agricultural waste. In this work, Themogravimetric analysis combined with online mass spectrometry (TGA-MS) was used to study the pyrolysis of corn agricultural waste with the aim of improving understanding of the carbonization process. Non-isothermal mass loss data from TGA was obtained for three types of corn waste, cobs, husks, and stalks; and used to calculate proximate analysis in terms of moisture, volatile matter, and charcoal content. TGA-MS data for the three materials was used to understand the emissions of H20, CO, H2S and C4H2 as a function of temperature. Activation energy, Ea, and pre-exponential factor, A, were calculated using the first order global single reaction model for corn cobs and husks. TG-DTG data suggested that corn cobs are better suited feedstocks for charcoal production. Mass Spectroscopy was found to successfully characterize emissions. For corn cobs, A = 1.3. 105 s-1 and E, = 88.6 kJ/mol, while for husks A = 5.2. 105 s-1 and Ea = 96.4 kJ/mol. Based on this work, a carbonization burn timeline worksheet was created to aid monitoring of char yield in the field.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 61-64).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105030
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.