MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical studies on the properties and dynamics of electronic excited states

Author(s)
Hait, Diptarka
Thumbnail
DownloadFull printable version (7.274Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Troy Van Voorhis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Molecules are rarely found in electronic excited states under standard conditions but such states play a major role in chemical reactions. Computational prediction of properties of such states is hard with standard DFT protocols, as made evident by the failure of linear response TDDFT in predicting energies of charge-transfer excited states with semi-local functionals. Condensed phase dynamics of excited states are even more intractable on account of the computational cost scaling exponentially with the number of condensed phase particles under consideration. However, it is still possible to develop cheap but accurate approximations for properties and dynamics of excited states, and herein we describe some of the methods developed by us along those directions. We first demonstrate that restricted open shell Kohn-Sham (ROKS) calculations with semi-local hybrid functionals give good agreement with experimental absorption energies, emission energies, zero-zero transition energies and singlet-triplet gaps of CT states-unlike TDDFT, which significantly underestimates energy gaps. We then show that is possible to compute the effects of conical intersections on non-adiabatic dynamics of chemical systems by deriving perturbative memory kernels for the linear vibronic coupling model, and employing them to calculate the population dynamics of the Fe(II)-Fe(III) self-exchange reaction. Finally, we present a relationship between perturbation theory traces of the spin-boson model that allows us to obtain the exact solution with arbitrary initial harmonic bath state in the slow bath limit. We then attempt to generalize it to multiple states, and devise a similar trace relationship which makes it trivial to write down closed form expressions for populations and kernels to arbitrary order for any n level system.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Chemistry, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 101-106).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105054
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.