dc.contributor.author | Fallon, Maurice | |
dc.contributor.author | Antone, Matthew | |
dc.contributor.author | Roy, Nicholas | |
dc.contributor.author | Teller, Seth | |
dc.date.accessioned | 2016-11-21T15:47:03Z | |
dc.date.available | 2016-11-21T15:47:03Z | |
dc.date.issued | 2014-11 | |
dc.identifier.isbn | 978-1-4799-7174-9 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/105376 | |
dc.description.abstract | This paper describes an algorithm for the probabilistic fusion of sensor data from a variety of modalities (inertial, kinematic and LIDAR) to produce a single consistent position estimate for a walking humanoid. Of specific interest is our approach for continuous LIDAR-based localization which
maintains reliable drift-free alignment to a prior map using a Gaussian Particle Filter. This module can be bootstrapped by constructing the map on-the-fly and performs robustly in a variety of challenging field situations. We also discuss a two-tier estimation hierarchy which preserves registration to this map and other objects in the robot’s vicinity while also contributing to direct low-level control of a Boston Dynamics Atlas robot. Extensive experimental demonstrations illustrate how the approach can enable the humanoid to walk over uneven terrain without stopping (for tens of minutes), which would otherwise not be possible. We characterize the performance of the estimator for each sensor modality and discuss the
computational requirements. | en_US |
dc.description.sponsorship | United States. Air Force Research Laboratory (Award FA8750-12-1-0321) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/HUMANOIDS.2014.7041346 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Fallon, Maurice F. et al. “Drift-Free Humanoid State Estimation Fusing Kinematic, Inertial and LIDAR Sensing.” IEEE, 2014. 112–119. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | en_US |
dc.contributor.mitauthor | Fallon, Maurice | |
dc.contributor.mitauthor | Antone, Matthew | |
dc.contributor.mitauthor | Roy, Nicholas | |
dc.contributor.mitauthor | Teller, Seth | |
dc.relation.journal | IEEE-RAS International Conference on Humanoid Robots, 2014. | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Fallon, Maurice F.; Antone, Matthew; Roy, Nicholas; Teller, Seth | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-8293-0492 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |