Show simple item record

dc.contributor.authorFallon, Maurice
dc.contributor.authorAntone, Matthew
dc.contributor.authorRoy, Nicholas
dc.contributor.authorTeller, Seth
dc.date.accessioned2016-11-21T15:47:03Z
dc.date.available2016-11-21T15:47:03Z
dc.date.issued2014-11
dc.identifier.isbn978-1-4799-7174-9
dc.identifier.urihttp://hdl.handle.net/1721.1/105376
dc.description.abstractThis paper describes an algorithm for the probabilistic fusion of sensor data from a variety of modalities (inertial, kinematic and LIDAR) to produce a single consistent position estimate for a walking humanoid. Of specific interest is our approach for continuous LIDAR-based localization which maintains reliable drift-free alignment to a prior map using a Gaussian Particle Filter. This module can be bootstrapped by constructing the map on-the-fly and performs robustly in a variety of challenging field situations. We also discuss a two-tier estimation hierarchy which preserves registration to this map and other objects in the robot’s vicinity while also contributing to direct low-level control of a Boston Dynamics Atlas robot. Extensive experimental demonstrations illustrate how the approach can enable the humanoid to walk over uneven terrain without stopping (for tens of minutes), which would otherwise not be possible. We characterize the performance of the estimator for each sensor modality and discuss the computational requirements.en_US
dc.description.sponsorshipUnited States. Air Force Research Laboratory (Award FA8750-12-1-0321)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/HUMANOIDS.2014.7041346en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleDrift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensingen_US
dc.typeArticleen_US
dc.identifier.citationFallon, Maurice F. et al. “Drift-Free Humanoid State Estimation Fusing Kinematic, Inertial and LIDAR Sensing.” IEEE, 2014. 112–119.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorFallon, Maurice
dc.contributor.mitauthorAntone, Matthew
dc.contributor.mitauthorRoy, Nicholas
dc.contributor.mitauthorTeller, Seth
dc.relation.journalIEEE-RAS International Conference on Humanoid Robots, 2014.en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFallon, Maurice F.; Antone, Matthew; Roy, Nicholas; Teller, Sethen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8293-0492
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record