Show simple item record

dc.contributor.advisorKerri Cahoy.en_US
dc.contributor.authorDecker, Zachary Scotten_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2016-12-05T19:10:36Z
dc.date.available2016-12-05T19:10:36Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105560
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged student-submitted from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 98-101).en_US
dc.description.abstractThis research conducts a broad systems-based analysis of CubeSat engineering, with a focus on testing, failures, and their relationship to program cost, in order to assess multiple build approaches with a goal of maintaining the advantages of CubeSat missions while increasing reliability. In this work, the multiple approaches are called "beta build strategies," and we show that satellite engineering groups with minimal experience can increase their probability of success by building two flight-model versions of their satellite, allowing for more exhaustive and potentially failure-inducing testing to be conducted on the first (beta version) satellite. This differentiates itself from the standard CubeSat build approach, which is typically to build a flat sat, then an engineering model, and then a flight model of the satellite. Frequently with CubeSat development, the additional expense of building a flight-like engineering model is avoided. However, in this work we consider the probability of success and overall cost impact for multiple approaches toward the flight build. We find that by spending an additional 33% of the planned program cost, a team which plans to take this alternate approach from the beginning can build and launch two flight-model versions of their spacecraft, increasing probability of success by 30%. This cost corresponds to a 40% saving from the scenario in which the decision to build a second flight-model spacecraft is made only after the first fails. The question which this analysis tries to answer is not, "how does a group spend the least amount of money to get their first CubeSat into space?" but rather, "how does a group spend the least amount of money to get a CubeSat into space that works?"en_US
dc.description.statementofresponsibilityby Zachary Scott Decker.en_US
dc.format.extent101 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleA systems-engineering assessment of multiple CubeSat build approachesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc962486705en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record