Show simple item record

dc.contributor.advisorElfar Adalsteinsson.en_US
dc.contributor.authorChatnuntawech, Itthien_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-12-05T19:11:02Z
dc.date.available2016-12-05T19:11:02Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105570
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 119-138).en_US
dc.description.abstractMagnetic Resonance Imaging (MRI) is a non-invasive medical imaging modality that has a wide range of applications in both diagnostic clinical imaging and medical research. MRI has progressively gained in importance in clinical use because of its ability to produce high quality images of soft tissue throughout the body without subjecting the patient to any ionizing radiation. In addition to exquisite anatomical detail obtained from the conventional MRI, complementary physiological information is also available through emerging specialized applications of MRI such as magnetic resonance spectroscopic imaging, quantitative susceptibility mapping, functional MRI, and diffusion MRI. Despite its great versatility, MRI is limited by the long time required to acquire the data needed to form an image. Since a typical MRI protocol consists of multiple scans of the same patient, the total scan time is commonly extended beyond half an hour. During the session, the patient must remain perfectly still within a tight and closed environment, raising difficulties for certain populations such as children and patients with claustrophobia. The long acquisition time of MRI not only reduces the availability of the MRI scanner, but also results in patient discomfort, which often leads to motion that degrades image quality. Therefore, reducing the acquisition time of MRI is a well-motivated problem. This thesis proposes acquisition and reconstruction methods that increase the imaging efficiency of MRI and two of its emerging specialized applications, magnetic resonance spectroscopic imaging and quantitative susceptibility mapping. In particular, each of the proposed methods increases the imaging efficiency by achieving at least one of two aims: reduction of total scan time and improved image quality by mitigating image artifacts, while minimizing reconstruction time.en_US
dc.description.statementofresponsibilityby Itthi Chatnuntawech.en_US
dc.format.extent138 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAcquisition and reconstruction methods for magnetic resonance imagingen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc963853531en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record