MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using 2D vortex plasmons/phonon polaritons to control electronic selection rules

Author(s)
Leal Machado, Francisco
Thumbnail
DownloadFull printable version (5.640Mb)
Alternative title
Using 2-dimensional plasmons/phonon polaritons to control electronic selection rules
Using two-dimensional vortex plasmons/phonon polaritons to control electronic selection rules
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Marin Soljač̌ić́.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The discovery of orbital angular momentum (OAM) sustaining modes established a new degree of freedom by which to control not only the flow of light but also its interaction with matter. However, OAM sustaining modes have yet to be used to control the quantum dynamics of an electron in an atom or molecule due to the large length scale discrepancy between the wavelength of light and the size of the electron's orbital. In this work, we analyze the interaction between OAM carrying polariton vortex modes (for plasmon and phonon polaritons) and a hydrogen atom, and show that these modes can be used to engineer new selection rules in electronic transitions. Moreover, we show that these selection rules are robust to the displacement of the electronic system away from the vortex center. Perhaps more surprisingly, we find how displacement can be used favourably to tune which absorption process is dominant. Our findings are best suited to vortex modes that can be created in graphene, monolayer conductors, hBN, thin polar dielectrics, and many other polariton-sustaining thin materials. Another platform for observing these effects could be quantum dots interfaced with surface plasmons in-conventional metals.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 69-73).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105594
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.