MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of electrode surface roughness on motional heating of trapped ions

Author(s)
Lin, Kuan-Yu, S.B. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.802Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Isaac L. Chuang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Electric field noise is a major source of motional heating in trapped ion quantum computation. While the influence of trap electrode geometries on electric field noise has been studied in patch potential and surface adsorbate models, only smooth surfaces are accounted for by current theory. The effects of roughness, a ubiquitous feature of surface electrodes, are poorly understood. We investigate its impact on electric field noise by deriving a rough-surface Green's function and evaluating its effects on adsorbate-surface binding energies. At cryogenic temperatures, heating rate contributions from adsorbates are predicted to exhibit an exponential sensitivity to local surface curvature, leading to either a large net enhancement or suppression over smooth surfaces. For typical experimental parameters, orders-of-magnitude variations in total heating rates can occur depending on the spatial distribution of absorbates. Through careful engineering of electrode surface profiles, our results suggests that heating rates can be tuned over orders of magnitudes.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 49-51).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105595
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.