Show simple item record

dc.contributor.advisorDavid L. Darmofal.en_US
dc.contributor.authorCarson, Hugh Alexanderen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2016-12-05T19:54:46Z
dc.date.available2016-12-05T19:54:46Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105608
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 103-105).en_US
dc.description.abstractIn this thesis, a priori convergence estimates are developed for outputs, output error estimates, and localizations of output error estimates for Galerkin finite element methods. Specifically, Continuous Galerkin (CG), Discontinuous Galerkin (DG), and Hybridized DG (HDG) methods are analyzed for the Poisson problem. A mixed formulation for DG output error estimation is proposed with improved convergence rates relative to the common approach utilizing statically condensed, p-dependent lifting operators. The HDG output error estimates are new and include the impact of stabilization. Comparisons to numerical results demonstrate (1) the sharpness of the estimates and (2) that the HDG estimates are approximately an order of magnitude more accurate than CG and DG.en_US
dc.description.statementofresponsibilityby Hugh Alexander Carson.en_US
dc.format.extent105 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleA priori analysis of global and local output error estimates for CG, DG and HDG finite element discretizationsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc962485917en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record