MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Planning for manipulation of interlinked deformable linear objects with applications to aircraft assembly

Author(s)
Shah, Ankit Jayesh
Thumbnail
DownloadFull printable version (6.867Mb)
Alternative title
Planning for manipulation of interlinked DLO with applications to aircraft assembly
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Julie A. Shah.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Manipulation of deformable linear objects (DLO) has potential applications in the fields of aerospace and automotive assembly. In this paper, we introduce a problem formulation for attaching a set of interlinked DLOs to a support structure using a set of clamping points. The formulation describes the manipulation planning problem in terms of known clamping locations; pre-determined ideal clamping locations on the cables, called "reference points", and a set of finite gripping points on the DLOs. We also present a prototype algorithm that generates a solution in terms of primitive manipulation actions. The algorithm guarantees that no interlink constraints are violated at any stage of manipulation. We incorporate gravity in the computation of a DLO shape and propose a property linking geometrically similar cable shapes across the space of cable length and stiffness. This property allows for the computation of solutions for unit length and scaling of these solutions to appropriate length, potentially resulting in faster shape computation.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 83-87).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105640
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.